【macd突破源码】【超强棋牌源码】【口令x源码】内核源码结构_内核源码结构是什么

来源:cgridctrl源码下载

1.zircon内核整体介绍(一)
2.v51.04 鸿蒙内核源码分析(ELF格式) | 应用程序入口并非main | 百篇博客分析OpenHarmony源码
3.剖析linux内核源码,内核内核task_struct结构体详解
4.Linux内核源码分析:Linux内核版本号和源码目录结构
5.Linux内核源码解析---cgroup实现之整体架构与初始化
6.Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理

内核源码结构_内核源码结构是源码源码什么

zircon内核整体介绍(一)

       在科技的前沿领域,Fuchsia操作系统以其独特的结构结构zircon微内核备受瞩目。与Linux的内核内核宏内核迥然不同,zircon以精简和高效著称,源码源码专注于核心功能,结构结构macd突破源码让代码更为纯粹。内核内核让我们一起深入理解zircon内核的源码源码结构与设计,感受其与众不同的结构结构魅力。

全面了解zircon</

       zircon内核代码是内核内核Fuchsia的灵魂,官网文档详尽且富有洞察。源码源码官网的结构结构设计思路清晰,为学习者提供了丰富的内核内核资源。我们首先从基础开始,源码源码探索核心目录结构:

kernel</:内核源码的结构结构心脏地带,承载着系统的核心功能。

system</:系统工具的宝库,构建高效的操作环境。

prebuilt, third_party, scripts, vdso</:构成操作系统完整体系的其他重要组件。

模块化的学习路径</

       为了更好地理解和学习,我们将zircon内核划分为三大模块,如同打开操作系统世界的钥匙:

虚拟化与并发</:进程管理、线程调度,以及内存管理与通信的精妙设计。

原子操作与同步机制</:并发控制的基石,如锁、信号量和条件变量的实现。

文件系统与系统调用</:实现仅百个POSIX接口的高效文件系统,系统调用的精炼呈现。

       这些模块是zircon内核架构的骨架,接下来我们将逐一剖析,揭示其背后的逻辑与设计思想。

深入源码分析</

       从启动流程到系统运行的每一个环节,zircon的源码都隐藏着无尽的奥秘。我们将逐步揭示这些核心模块的工作原理,带你领略zircon内核的精巧与深度。

       探索的脚步从未停歇,zircon内核整体介绍(一)</为我们揭开了序幕,后续的深入解析将逐步深入操作系统启动流程(二),敬请期待。

v. 鸿蒙内核源码分析(ELF格式) | 应用程序入口并非main | 百篇博客分析OpenHarmony源码

       鸿蒙内核源码分析(ELF格式篇) | 应用程序入口并非main

       深入解析ELF格式与鸿蒙源码的关系,探寻应用程序入口的奥秘。本文将带你从一段简单的超强棋牌源码C代码开始,跟踪其编译成ELF格式后的神秘结构,揭秘ELF的组成与内部运作机制。

       以E:\harmony\docker\case_code_目录下的main.c文件为例,通过编译生成ELF文件,运行后使用readelf -h命令查看应用程序头部信息。了解ELF文件的全貌,从ELF头信息、段信息、段区映射关系、区表等多方面深入探讨。

       ELF格式文件由四大部分组成:头信息、段信息、段区映射关系和区表。头信息包含关键元数据,如文件类型、字节顺序、文件大小等;段信息描述了可执行代码和数据段的属性和位置;段区映射关系展示了段与区的关联;区表则存储了每个区的详细信息。

       通过readelf -l命令,可以观察到段信息及其在程序中的作用,如初始化数组、动态链接、栈区等。在运行时,不同段以特定方式映射到内存中,实现代码的加载和执行。

       在深入分析后,发现应用程序的真正入口并非通常理解的main函数,而是一个名为_start的特殊函数。这揭示了鸿蒙内核在启动时的执行流程,以及如何在ELF格式中组织和加载代码。

       本文以ELF格式为切入点,带你全面理解鸿蒙内核源码的组织结构与运行机制。通过百万汉字注解,带你精读内核源码,深入挖掘其地基。在Gitee仓(gitee.com/weharmony/ker...)同步注解,共同探索鸿蒙研究站(weharmonyos)的奥秘。

剖析linux内核源码,task_struct结构体详解

       在Linux内核中,进程与线程的统一数据结构是task_struct,它作为进程存在的唯一实体,通过双向循环链表连接所有task_struct。口令x源码每个任务拥有唯一标识pid和线程组IDtgid,其中group_leader指向进程主线程。有了tgid,我们可以区分task_struct代表进程还是线程。

       Linux kernel通过成员变量表示进程的亲缘关系,包括进程状态和权限控制。进程权限涉及进程访问文件、访问其他进程及执行操作的能力。操作权限由cred和real_cred成员表示,描述了当前进程和试图操作的进程之间的权限关系。

       进程运行统计信息记录了用户态和内核态上消耗的时间以及上下文切换次数,反映了进程的运行情况。信号处理包括被阻塞、等待处理和正在处理的信号,信号处理函数可以忽略或结束进程,处理栈用于信号处理。

       进程的虚拟地址空间分为用户虚拟地址空间和内核虚拟地址空间,每个进程有独立的用户虚拟地址空间,内核线程无用户地址空间。进程拥有文件系统数据结构和打开文件数据结构,涉及Linux文件系统操作。

       每个task都有内核栈,用于在调用系统调用时从用户态切换到内核态。内核栈包含thread_info和pt_regs数据结构,其中thread_info由体系结构定义,pt_regs用于保存系统调用时的CPU上下文。在系统调用返回时,可以从进程的原来位置继续运行。

       综上所述,task_struct结构体在Linux内核中扮演着关键角色,它管理着进程和线程的生命周期,从状态管理、权限控制、运行统计、信号处理到内存管理与文件系统交互,以及系统调用的上下文切换,都是通过task_struct的成员变量和结构体实现的。这些特性使得Linux内核能够高效、灵活地管理多任务环境。

Linux内核源码分析:Linux内核版本号和源码目录结构

       深入探索Linux内核世界:版本号与源码结构剖析

       Linux内核以其卓越的稳定性和灵活性著称,版本号的精心设计彰显其功能定位。Linux采用xxx.yyy.zzz的cos卡源码格式,其中yy代表驱动和bug修复,zz则是修订次数的递增。主版本号(xx)与次版本号(yy)共同描绘了核心功能的大致轮廓,而修订版(zz)则确保了系统的稳定性与可靠性。

       Linux源码的结构犹如一座精密的城堡,由多个功能强大的模块构成。首先,arch目录下包含针对不同体系结构的代码,比如RISC-V和x的虚拟地址翻译,是内核与硬件之间的重要桥梁。接着,blockdrivers的区别在于,前者封装了通用的块设备操作,如读写,而后者则根据特定硬件设备分布在各自的子目录中,如GPIO设备在drivers/gpio。

       为了保证组件来源的可信度和系统安全,certs目录存放认证和签名相关的代码,预先装载了必要的证书。从Linux 2.2版本开始,内核引入动态加载模块机制,fsnet目录下的代码分别支持虚拟文件系统和网络协议,这大大提升了灵活性,但同时也对组件验证提出了更高要求,以防止恶意代码的入侵。

       内核的安全性得到了进一步加强,crypto目录包含了各种加密算法,如AES和DES,它们为硬件驱动提供了性能优化。同时,内核还采用了压缩算法,如LZO和LZ4,以减小映像大小,提升启动速度和内存利用效率。

       文档是理解内核运作的关键,《strong>Documentation目录详尽地记录了模块的功能和规范。此外,include存储内核头文件,init负责初始化过程,IPC负责进程间通信,kernel核心代码涵盖了进程和中断管理,lib提供了通用库函数,外国软件源码mm则专注于内存管理。网络功能则在net目录下,支持IPv4和TCP/IPv6等协议。

       内核的实用工具和示例代码在scriptssamples目录下,而security则关注安全机制,sound负责音频驱动,tools则存放开发和调试工具,如perf和kconfig。用户内核源码在usr目录,虚拟化支持在virt,而LICENSE目录保证了源码的开放和透明。

       最后,Makefile是编译内核的关键,README文件则包含了版本信息、硬件支持、安装配置指南,以及已知问题、限制和BUG修复等重要细节。这份详尽的指南是新用户快速入门Linux内核的绝佳起点。

       通过深入研究这些目录,开发者和爱好者可以更全面地理解Linux内核的运作机制,从而更好地开发、维护和优化这个强大的操作系统。[原文链接已移除,以保护版权]

Linux内核源码解析---cgroup实现之整体架构与初始化

       cgroup在年由Google工程师开发,于年被融入Linux 2.6.内核。它旨在管理不同进程组,监控一组进程的行为和资源分配,是Docker和Kubernetes的基石,同时也被高版本内核中的LXC技术所使用。本文基于最早融入内核中的代码进行深入分析。

       理解cgroup的核心,首先需要掌握其内部的常用术语,如子系统、层级、cgroupfs_root、cgroup、css_set、cgroup_subsys_state、cg_cgroup_link等。子系统负责控制不同进程的行为,例如CPU子系统可以控制一组进程在CPU上执行的时间占比。层级在内核中表示为cgroupfs_root,一个层级控制一批进程,层级内部绑定一个或多个子系统,每个进程只能在一个层级中存在,但一个进程可以被多个层级管理。cgroup以树形结构组织,每一棵树对应一个层级,层级内部可以关联一个或多个子系统。

       每个层级内部包含的节点代表一个cgroup,进程结构体内部包含一个css_set,用于找到控制该进程的所有cgroup,多个进程可以共用一个css_set。cgroup_subsys_state用于保存一系列子系统,数组中的每一个元素都是cgroup_subsys_state。cg_cgroup_link收集不同层级的cgroup和css_set,通过该结构可以找到与之关联的进程。

       了解了这些概念后,可以进一步探索cgroup内部用于结构转换的函数,如task_subsys_state、find_existing_css_set等,这些函数帮助理解cgroup的内部运作。此外,cgroup_init_early和cgroup_init函数是初始化cgroup的关键步骤,它们负责初始化rootnode和子系统的数组,为cgroup的使用做准备。

       最后,需要明确Linux内一切皆文件,cgroup基于VFS实现。内核启动时进行初始化,以确保系统能够正确管理进程资源。cgroup的初始化过程分为早期初始化和常规初始化,其中早期初始化用于准备cpuset和CPU子系统,确保它们在系统运行时能够正常工作。通过这些步骤,我们可以深入理解cgroup如何在Linux内核中实现资源管理和进程控制。

Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理

       引子

       在如今的大型服务器中,NUMA架构扮演着关键角色。它允许系统拥有多个物理CPU,不同NUMA节点之间通过QPI通信。虽然硬件连接细节在此不作深入讨论,但需明白每个CPU优先访问本节点内存,当本地内存不足时,可向其他节点申请。从传统的SMP架构转向NUMA架构,主要是为了解决随着CPU数量增多而带来的总线压力问题。

       分配物理内存时,numa_node_id() 方法用于查询当前CPU所在的NUMA节点。频繁的内存申请操作促使Linux内核采用per-cpu实现,将CPU访问的变量复制到每个CPU中,以减少缓存行竞争和False Sharing,类似于Java中的Thread Local。

       分配物理页

       尽管我们不必关注底层实现,buddy system负责分配物理页,关键在于使用了numa_node_id方法。接下来,我们将深入探索整个Linux内核的per-cpu体系。

       numa_node_id源码分析获取数据

       在topology.h中,我们发现使用了raw_cpu_read函数,传入了numa_node参数。接下来,我们来了解numa_node的定义。

       在topology.h中定义了numa_node。我们继续跟踪DECLARE_PER_CPU_SECTION的定义,最终揭示numa_node是一个共享全局变量,类型为int,存储在.data..percpu段中。

       在percpu-defs.h中,numa_node被放置在ELF文件的.data..percpu段中,这些段在运行阶段即为段。接下来,我们返回raw_cpu_read方法。

       在percpu-defs.h中,我们继续跟进__pcpu_size_call_return方法,此方法根据per-cpu变量的大小生成回调函数。对于numa_node的int类型,最终拼接得到的是raw_cpu_read_4方法。

       在percpu.h中,调用了一般的read方法。在percpu.h中,获取numa_node的绝对地址,并通过raw_cpu_ptr方法。

       在percpu-defs.h中,我们略过验证指针的环节,追踪arch_raw_cpu_ptr方法。接下来,我们来看x架构的实现。

       在percpu.h中,使用汇编获取this_cpu_off的地址,代表此CPU内存副本到".data..percpu"的偏移量。加上numa_node相对于原始内存副本的偏移量,最终通过解引用获得真正内存地址内的值。

       对于其他架构,实现方式相似,通过获取自己CPU的偏移量,最终通过相对偏移得到pcp变量的地址。

       放入数据

       讨论Linux内核启动过程时,我们不得不关注per-cpu的值是如何被放入的。

       在main.c中,我们以x实现为例进行分析。通过setup_percpu.c文件中的代码,我们将node值赋给每个CPU的numa_node地址处。具体计算方法通过early_cpu_to_node实现,此处不作展开。

       在percpu-defs.h中,我们来看看如何获取每个CPU的numa_node地址,最终还是通过简单的偏移获取。需要注意如何获取每个CPU的副本偏移地址。

       在percpu.h中,我们发现一个关键数组__per_cpu_offset,其中保存了每个CPU副本的偏移值,通过CPU的索引来查找。

       接下来,我们来设计PER CPU模块。

       设计一个全面的PER CPU架构,它支持UMA或NUMA架构。我们设计了一个包含NUMA节点的结构体,内部管理所有CPU。为每个CPU创建副本,其中存储所有per-cpu变量。静态数据在编译时放入原始数据段,动态数据在运行时生成。

       最后,我们回到setup_per_cpu_areas方法的分析。在setup_percpu.c中,我们详细探讨了关键方法pcpu_embed_first_chunk。此方法管理group、unit、静态、保留、动态区域。

       通过percpu.c中的关键变量__per_cpu_load和vmlinux.lds.S的链接脚本,我们了解了per-cpu加载时的地址符号。PERCPU_INPUT宏定义了静态原始数据的起始和结束符号。

       接下来,我们关注如何分配per-cpu元数据信息pcpu_alloc_info。percpu.c中的方法执行后,元数据分配如下图所示。

       接着,我们分析pcpu_alloc_alloc_info的方法,完成元数据分配。

       在pcpu_setup_first_chunk方法中,我们看到分配的smap和dmap在后期将通过slab再次分配。

       在main.c的mm_init中,我们关注重点区域,完成map数组的slab分配。

       至此,我们探讨了Linux内核中per-cpu实现的原理,从设计到源码分析,全面展现了这一关键机制在现代服务器架构中的作用。

Linux内核源码分析:Linux进程描述符task_ struct结构体详解

       Linux内核通过一个task_struct结构体来管理进程,这个结构体包含了一个进程所需的所有信息。它定义在include/linux/sched.h文件中,包含许多字段,其中state字段表示进程的当前状态。常见的状态包括运行、阻塞、等待信号、终止等。进程状态的切换和原因可通过内核函数进行操作。PID是系统用来唯一标识正在运行的每个进程的数字标识,tgid成员表示线程组中所有线程共享的PID。进程内核栈用于保存进程在内核态执行时的临时数据和上下文信息,通常为几千字节。内核将thread_info结构与内核态线程堆栈结合在一起,占据连续的两个页框,以便于访问线程描述符和栈。获取当前运行进程的thread_info可通过esp栈指针实现。thread_info结构包含task字段,指向进程控制块(task_struct)。task_struct结构体的flags字段用于记录进程标记或状态信息,如创建、超级用户、核心转储、信号处理、退出等。而real_parent和parent成员表示进程的亲属关系,用于查找和处理进程树中的亲属关系。

linux内核源码目录在哪linux内核源码

       如何查看linux内核源代码?

       一般在Linux系统中的/usr/src/linux*.*.*(*.*.*代表的是内核版本,如2.4.)目录下就是内核源代码(如果没有类似目录,是因为还没安装内核代码)。另外还可从互连网上免费下载。注意,不要总到目录里是核心的网络部分代码,其每个子目录对应于网络的一个方面。

       .lib目录包含了核心的库代码,不过与处理器结构相关的库代码被放在arch/*/lib/目录下。

       .scripts目录包含用于配置核心的脚本文件。

       .documentation目录下是一些文档,是对每个目录作用的具体说明。

       一般在每个目录下都有一个.depend文件和一个Makefile文件。这两个文件都是编译时使用的辅助文件。仔细阅读这两个文件对弄清各个文件之间的联系和依托关系很有帮助。另外有的目录下还有Readme文件,它是对该目录下文件的一些说明,同样有利于对内核源码的理解。

       在阅读方法或顺序上,有纵向与横向之分。所谓纵向就是顺着程序的执行顺序逐步进行;所谓横向,就是按模块进行。它们经常结合在一起进行。对于Linux启动的代码可顺着Linux的启动顺序一步步来阅读;对于像内存管理部分,可以单独拿出来进行阅读分析。实际上这是一个反复的过程,不可能读一遍就理解。

文章所属分类:探索频道,点击进入>>